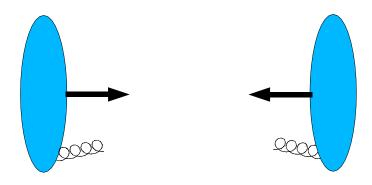
Production of high-p_t particles in AuAu and dAu

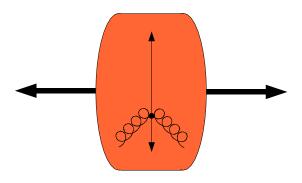

Carlos A. Salgado

CERN, TH-Division

- → Motivation. → Medium properties.
- initial state.
 - nuclear PDF.
 - Saturation ??
- Final state: jet quenching.
 - Inclusive particle production.
 - Jet observables.

Space-time picture

Before the collision, initial state: nuclear PDF's.

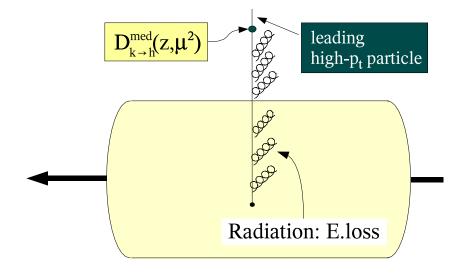


QCD factorization formula:

$$\frac{d\sigma_{AB}^h}{dp_t^2dy} \sim \sum_{i,j} x_1 f_i^p(x_1,Q^2) \otimes x_2 f_j^p(x_2,Q^2) \otimes \frac{d\sigma^{ij\to k}}{d\hat{t}} \otimes D_{k\to h}^{\mathrm{med}}(z,\mu_F^2)$$

Space-time picture

At $t \sim 0$



QCD factorization formula:

$$\frac{d\sigma_{AB}^h}{dp_t^2dy} \sim \sum_{i,j} x_1 f_i^p(x_1, Q^2) \otimes x_2 f_j^p(x_2, Q^2) \otimes \frac{d\sigma^{ij \to k}}{d\hat{t}} \otimes D_{k \to h}^{\text{med}}(z, \mu_F^2)$$

Space-time picture

Evolution.

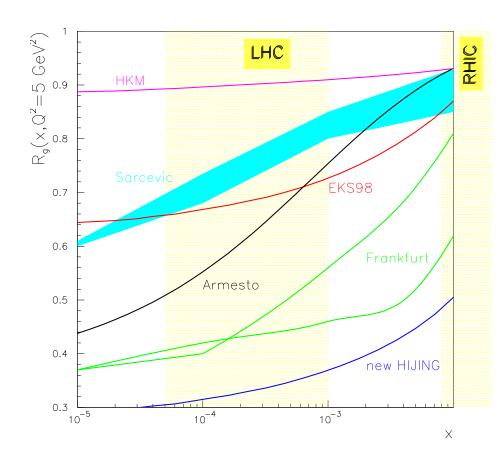
QCD factorization formula:

$$\frac{d\sigma_{AB}^h}{dp_t^2dy} \sim \sum_{i,j} x_1 f_i^p(x_1, Q^2) \otimes x_2 f_j^p(x_2, Q^2) \otimes \frac{d\sigma^{ij \to k}}{d\hat{t}} \otimes D_{k \to h}^{\text{med}}(z, \mu_F^2)$$

Initial State

Nuclear PDF: DGLAP approaches

Nuclear modifications to PDF:


$$R_i^A(x,Q^2) \equiv \frac{f_i^A(x,Q^2)}{f_i^N(x,Q^2)}$$

Several approaches (fits, theoretical...)

Goal of DGLAP approaches:

- → perform a set of nPDF following the procedure for protons:
- \Rightarrow Initial conditions at $Q_0 > \Lambda_{QCD}$
- ⇒ Evolution by DGLAP equations.

Gluons for Pb, Q^2 =5 GeV²

Accardi et al. hep-ph/0308248

Constrains for gluons from DIS data

At small values of x, LO–DGLAP gives

$$\frac{\partial F_2^{p(n)}(x, Q^2)}{\partial \log Q^2} \propto xg(2x, Q^2).$$

This leads to

$$\frac{\partial R_{F_2}^A(x, Q^2)}{\partial \log Q^2} \propto \left\{ R_g^A(2x, Q^2) - R_{F_2}^A(x, Q^2) \right\},\,$$

 Q^2 -dependence of F_2^{Sn}/F_2^C (NMC)

positive slope →

$$R_g^A(2x,Q^2) \ge R_{F_2}^A(x,Q^2).$$

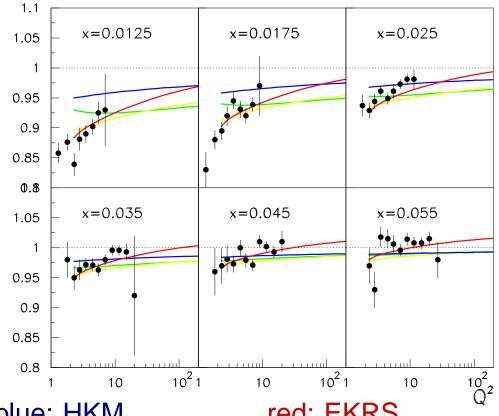
(Eskola, et al., PLB532, 222)

Constrains for gluons from DIS data

At small values of x, LO–DGLAP gives

$$\frac{\partial F_2^{p(n)}(x, Q^2)}{\partial \log Q^2} \propto xg(2x, Q^2).$$

This leads to


$$\frac{\partial R_{F_2}^A(x,Q^2)}{\partial \log Q^2} \propto \left\{ R_g^A(2x,Q^2) - R_{F_2}^A \right\}$$

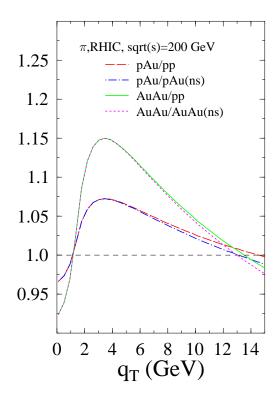
 Q^2 -dependence of F_2^{Sn}/F_2^C (NMC)

positive slope ----

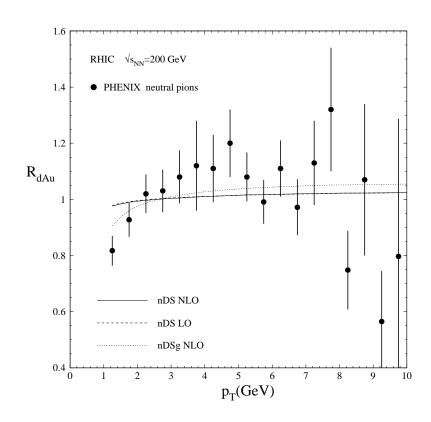
$$R_g^A(2x, Q^2) \ge R_{F_2}^A(x, Q^2).$$

(Eskola, et al., PLB532, 222)

blue: HKM

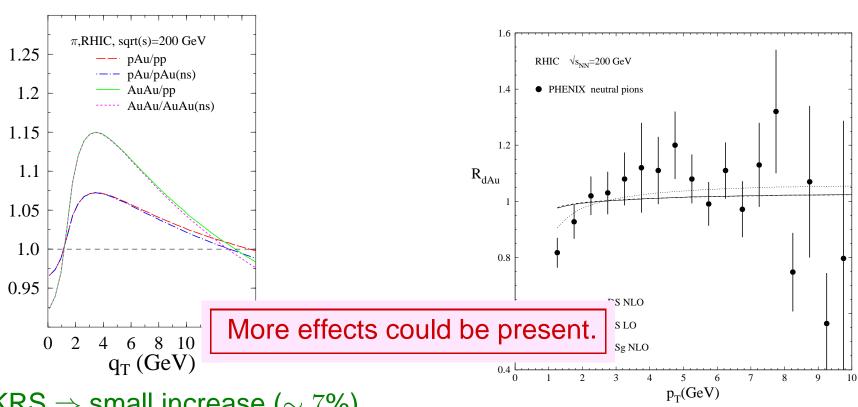

red: EKRS

green: New HIJING yellow: HPC


(Full DGLAP evolution)

Comparison with dAu π^0 data

(PHENIX, PRL 91, 072303)


EKRS \Rightarrow small increase (\sim 7%) (Eskola, Honkanen NPA713 (2003) 167)

(de Florian, Sassot, hep-ph/0311227)

Comparison with dAu π^0 data

(PHENIX, PRL 91, 072303)

EKRS \Rightarrow small increase ($\sim 7\%$)

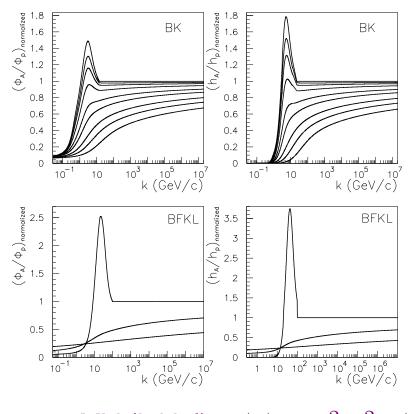
(Eskola, Honkanen NPA713 (2003) 167)

(de Florian, Sassot, hep-ph/0311227)

Suppression & Saturation: tomorrow's session.

- \Rightarrow Saturation physics proposed to explain suppression in central AuAu at $y\sim 0$ (Kharzeev, Levin, McLerran PLB561, 93)
- \Rightarrow dAu data \Longrightarrow this is not realized at $y \sim 0$
- However, predictions in this framework:

 (Albacete, Armesto, Kovner, Salgado, Wiedemann, hep-ph/0307179;
 Baier, Kovner, Wiedemann, PRD68, 054009, hep-ph/0305265 v2;
 Kharzeev, Kovchegov, Tuchin PRD68, 094013 hep-ph/0307037 v2;
 Jalilian-Marian, Nara, Venugopalan, PLB577, 54 nucl-th/0307022 v2)
 - Suppose Cronin effect (enhancement) included in MV model (no evolution).

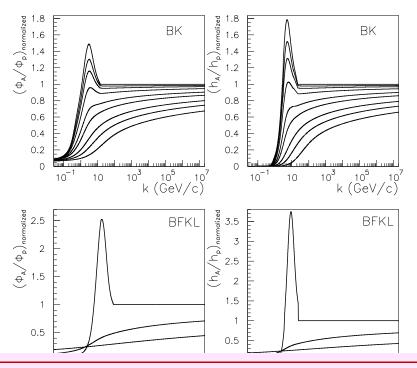

Suppression & Saturation: tomorrow's session.

- \Rightarrow Saturation physics proposed to explain suppression in central AuAu at $y\sim0$ (Kharzeev, Levin, McLerran PLB561, 93)
- \Rightarrow dAu data \Longrightarrow this is not realized at $y \sim 0$
- However, predictions in this framework:

 (Albacete, Armesto, Kovner, Salgado, Wiedemann, hep-ph/0307179;
 Baier, Kovner, Wiedemann, PRD68, 054009, hep-ph/0305265 v2;
 Kharzeev, Kovchegov, Tuchin PRD68, 094013 hep-ph/0307037 v2;
 Jalilian-Marian, Nara, Venugopalan, PLB577, 54 nucl-th/0307022 v2)
 - Substitution Cronin effect (enhancement) included in MV model (no evolution).
 - Small-x evolution (BFKL, BK) suppresses the gluon densities for all p_t very efficiently.

BK and BFKL evolution erases Cronin enhancement

(Albacete, Armesto, Kovner, Salgado, Wiedemann, hep-ph/0307179) Taken MV as initial condition for BK evolution:

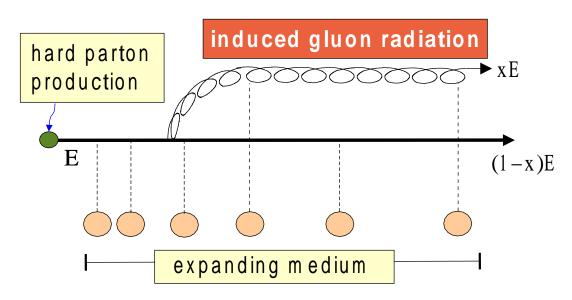

$$\Phi \to \mathsf{MV}$$
 (initial); $h(k) = k^2 \nabla_k^2 \Phi(k)$

$$\frac{\alpha_s N_c}{\pi} Y = 0, 0.05, 0.1, 0.2, 0.4, 0.6, 1, 1.4$$
and 2

BK and BFKL evolution erases Cronin enhancement

(Albacete, Armesto, Kovner, Salgado, Wiedemann, hep-ph/0307179)

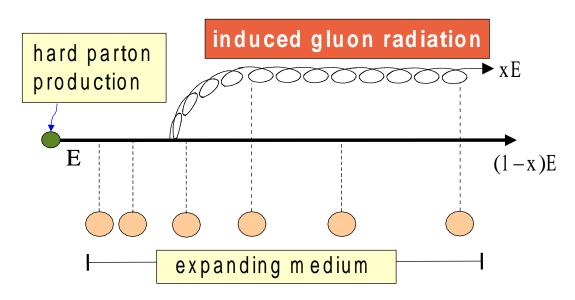
Taken MV as initial condition for BK evolution:


Suppression at forward rapidities \rightarrow BRAHMS???.

$$\Phi \to \mathsf{MV}$$
 (initial); $h(k) = k^2 \nabla_k^2 \Phi(k)$

$$\frac{\alpha_s N_c}{\pi} Y = 0, 0.05, 0.1, 0.2, 0.4, 0.6, 1, 1.4$$
and 2

Final State


Medium-induced gluon radiation.

For media of finite length

$$\omega \frac{dI^{tot}}{d\omega dk_{\perp}^{2}} = \left| \frac{1}{0} \right|^{2} + 2\operatorname{Re} \left| \frac{1}{0} \right|^{2} + \left| \frac{1}{0} \right|^{2}$$

Medium-induced gluon radiation.

For media of finite length

$$\omega \frac{dI^{tot}}{d\omega dk_{\perp}^{2}} = \left| \frac{1}{0} \right|^{2} + 2\operatorname{Re} \left| \frac{1}{0} \right|^{2} + \left| \frac{1$$

The medium induced gluon radiation

$$\omega \frac{dI}{d\omega dk_{\perp}^{2}} = \omega \frac{dI^{tot}}{d\omega dk_{\perp}^{2}} + \omega \frac{dI^{vac}}{d\omega dk_{\perp}^{2}}$$

Medium: L (length) and \hat{q} (transport coefficient).

Coherent radiation

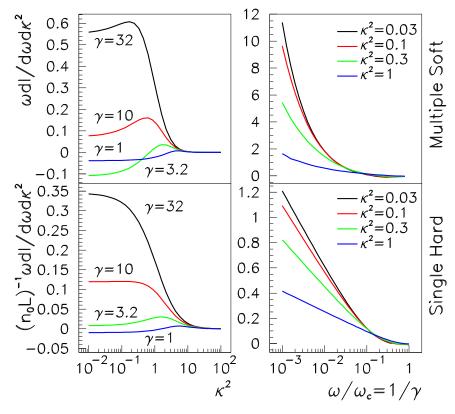
Coherence effects are important in high energy multiple scattering processes. For a gluon emitted with energy ω and k_{\perp} ,

$$\varphi = \left\langle \frac{k_{\perp}^2}{2\omega} \, \Delta z \right\rangle \Longrightarrow l_{coh} \sim \frac{\omega}{k_{\perp}^2}$$

Medium \longrightarrow transport coefficient $\hat{q} \simeq \frac{\mu^2}{\lambda}$, transverse momentum μ^2 per mean free path λ . So,

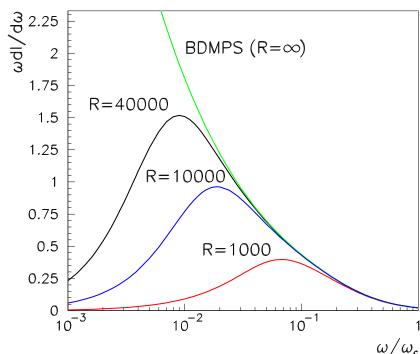
$$k_{\perp}^2 \sim \frac{l_{coh}}{\lambda} \mu^2 \implies k_{\perp}^2 \sim \hat{q}L \quad \text{(for } l_{coh} = L\text{)}$$

Let us define $\kappa^2 \equiv \frac{k_\perp^2}{\hat{q}L} \;,\; \omega_c = \frac{1}{2}\hat{q}L^2$


So, the phase for $\Delta z = L \longrightarrow \varphi \sim \kappa^2 \frac{\omega_c}{\omega}$

gluon emitted when $\varphi\gtrsim 1$ \Longrightarrow radiation suppressed for $\kappa^2{\lesssim}\omega/\omega_c$

In cold nuclear matter: $Q_{sat}^2 = \hat{q}L \Longrightarrow \kappa^2 = \frac{k_\perp^2}{Q_{sat}^2}$


Gluon energy distributions for quark jets

$$\kappa^2 = \frac{k_\perp^2}{\hat{q}L} \; , \; \omega_c = \frac{1}{2}\hat{q}L^2$$

Plateau at small $\kappa \longleftrightarrow$ coherence gluons \Longrightarrow factor N_c/C_F larger

$$\omega \frac{dI}{d\omega} = \int_0^\omega dk_\perp \omega \frac{dI}{d\omega dk_\perp}$$

kinematical limit

$$k_{\perp} \leq \omega \implies R = \omega_c L \text{ finite}$$

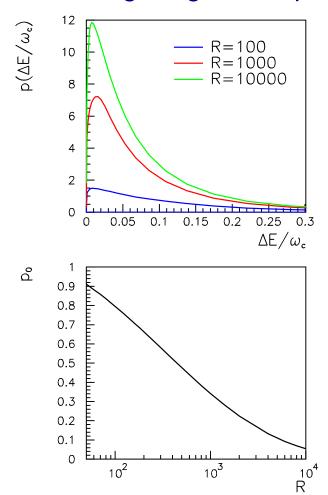
Infrared safe.

Applications: medium-modified FF.

Model: (Wang, Huang, Sarcevic, PRL 77 2537)

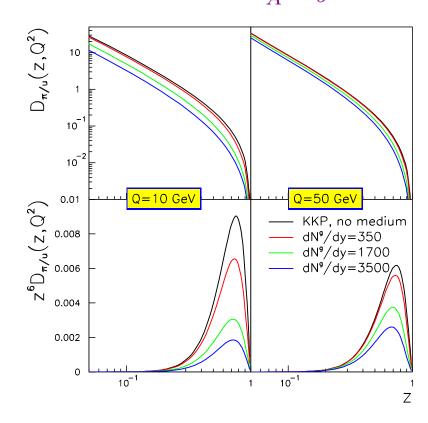
$$D_{h/q}^{(\text{med})}(z,Q^2) = \int_0^1 d\epsilon \, P_E(\epsilon) \, \frac{1}{1-\epsilon} \, D_{h/q}(\frac{z}{1-\epsilon},Q^2) \,.$$

 $P(\epsilon)$ probability that the hard parton loses a fraction of energy ϵ . Independent gluon emission approx.: (BDMS, JHEP 0109:033)

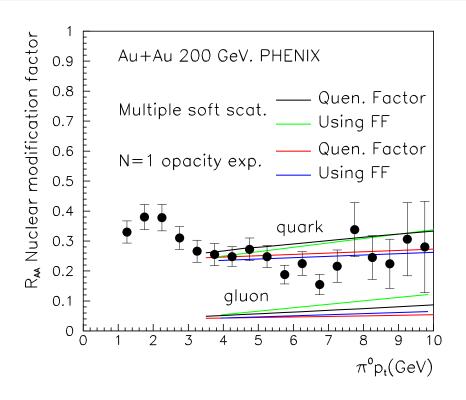

$$P_E(\epsilon) = \sum_{n=0}^{\infty} \frac{1}{n!} \left[\prod_{i=1}^n \int d\omega_i \frac{dI(\omega_i)}{d\omega} \right] \delta\left(\epsilon - \sum_{i=1}^n \frac{\omega_i}{E}\right) \exp\left[-\int d\omega \frac{dI}{d\omega}\right].$$

$$P(\epsilon) = p_0 \delta(\epsilon) + p(\epsilon)$$

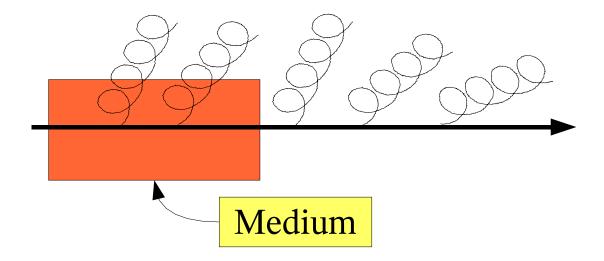
 $p_0 \Rightarrow \text{no E.loss and } p(\epsilon) \Rightarrow \text{sum for } n \geq 1.$

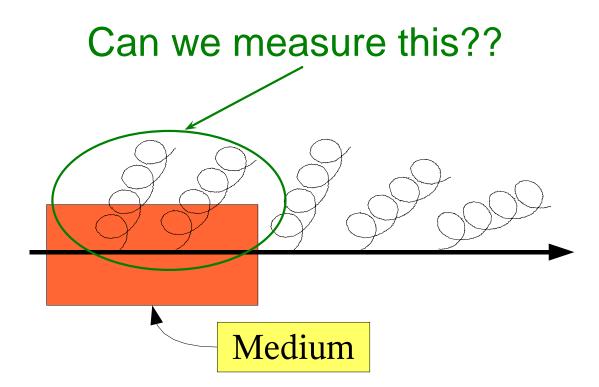

Applications: medium-modified FF.

Quenching weights for quarks.


Tabulated: http://home.cern.ch/csalgado

$$R = \frac{\overline{\hat{q}}}{2}L^3 = \frac{L^2}{R_A^2} \frac{dN^g}{dy}$$



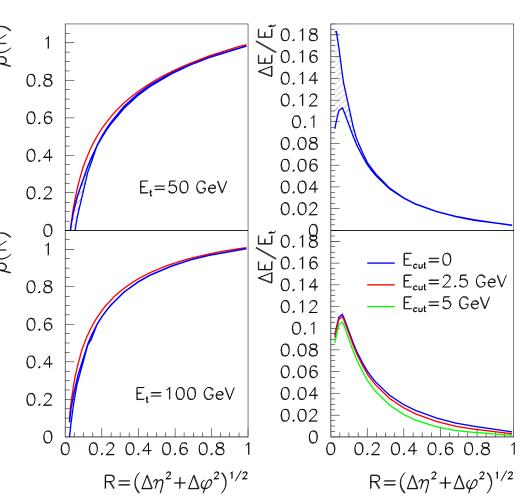

Suppression of \sim 5 for $p_t \sim$ 5÷7 GeV \Longrightarrow R \sim 2000.

Applications: Comparison with PHENIX data.

- \Rightarrow Factor 5 suppression needs R \sim 1000 \div 2000. But small- p_t region not well reproduced: additional effects? (shadowing, Cronin ...) Gyulassy, Levai, Vitev, Wang, Arleo ...
- \Rightarrow Smallest values of p_t are in the limit of applicability of the calculations.
- Slope and magnitude of the effect are ok.

Jet shapes

ho(R), fraction of the jet energy inside a cone $R=\sqrt{\Delta\eta^2+\Delta\phi^2}$


$$\rho_{\text{vac}}(R) = \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{E_t(R)}{E_t(R=1)}$$

$$\rho_{\text{med}} = \rho_{\text{vac}} - \frac{\Delta E_t(R)}{E_t(R=1)}$$

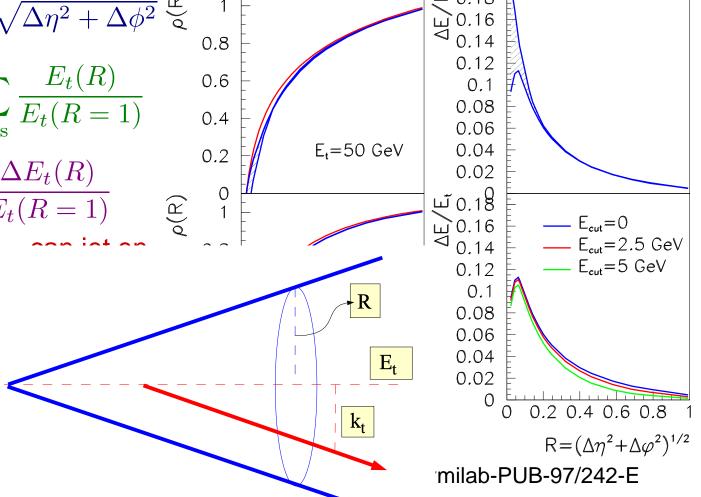
Small modification → can jet energy be determined experimentally above background?? Scaling with number of collisions for large cone angle.

Small sensitivity to IR cuts!

(Salgado, Wiedemann hep-ph/0310079)

Vacuum D0 data: Fermilab-PUB-97/242-E

Jet shapes


 $\rho(R)$, fraction of the jet energy inside a cone $R=\sqrt{\Delta\eta^2+\Delta\phi^2}$

$$\rho_{\text{vac}}(R) = \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{E_t(R)}{E_t(R=1)}$$

$$\rho_{\text{med}} = \rho_{\text{vac}} - \frac{\Delta E_t(R)}{E_t(R=1)}$$

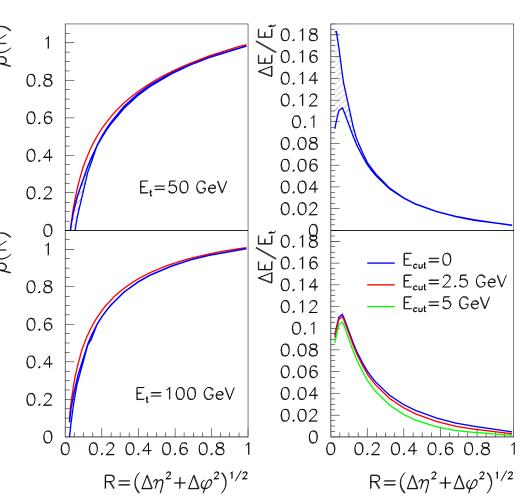
Small modification ergy be determine tally above backgr Scaling with numb for large cone ang

Small sensitivity to (Salgado, Wiedemann

ய் 0.18

Jet shapes

ho(R), fraction of the jet energy inside a cone $R=\sqrt{\Delta\eta^2+\Delta\phi^2}$


$$\rho_{\text{vac}}(R) = \frac{1}{N_{\text{jets}}} \sum_{\text{jets}} \frac{E_t(R)}{E_t(R=1)}$$

$$\rho_{\text{med}} = \rho_{\text{vac}} - \frac{\Delta E_t(R)}{E_t(R=1)}$$

Small modification → can jet energy be determined experimentally above background?? Scaling with number of collisions for large cone angle.

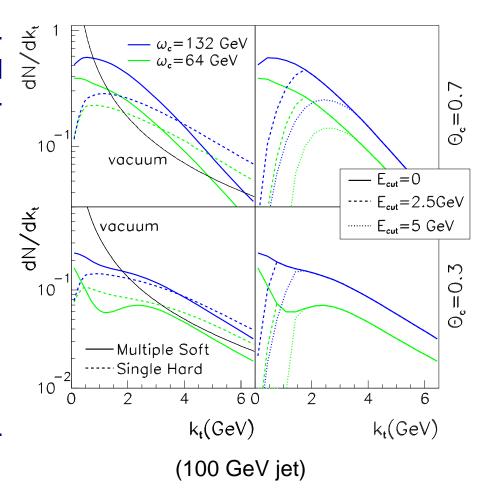
Small sensitivity to IR cuts!

(Salgado, Wiedemann hep-ph/0310079)

Vacuum D0 data: Fermilab-PUB-97/242-E

Gluon multiplicity inside the jet.

The characteristic angular distribution of the medium—induced gluon radiation could be better observed in the quantity

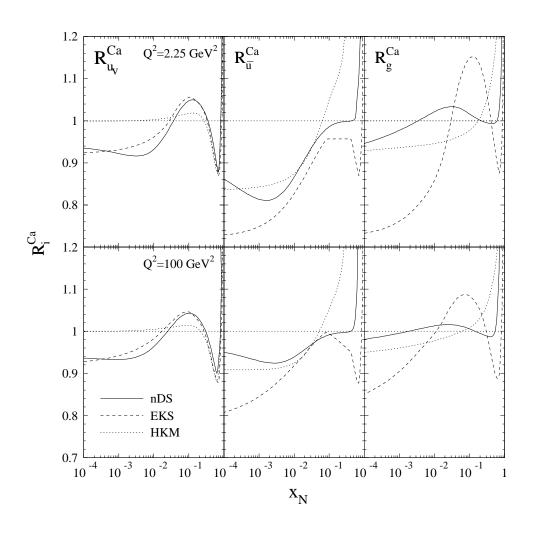

$$\frac{dN^{\rm jet}}{dk_{\perp}} = \int_{k_{\perp}/\sin\theta_c}^{E} d\omega \frac{dI}{d\omega dk_{\perp}}$$

For the vacuum we simply use

$$\frac{dI_{\rm vac}}{d\omega dk_{\perp}} \sim \frac{1}{\omega} \frac{1}{k_{\perp}}$$

Needs a more quantitative analysis.

But, effect based mainly on kinematics!



Conclusion

- → High-pt particle production is affected by the medium → good probe to study its properties.
- \Rightarrow RHIC high- p_t results strongly point to a final state effect in central AuAu.
 - S In agreement with jet-quenching interpretation.
 - \triangleleft dAu data essential.
- \Rightarrow DGLAP+NMC \Rightarrow not very strong gluon shadowing for $x \ge 0.01$.
- \Rightarrow Small-x evolution removes Cronin very fast \Rightarrow forward rapidities (?)
- \Rightarrow Medium-induced gluon radiation computed for realistic length & kinematics: We recover BDMPS for $R \to \infty$. Small IR-sensitivity.
- → Angular dependence of the radiation → study Jets.
- ⇒ Jet shapes → Can these effects be seen @ RHIC?
 - Small effect in the azimuthal redistribution of jet energy.
 - Soluon multiplicities inside the jets could be a clean observable.

DGLAP analyses

Comparison EKS, HKM, nDS (de Florian and Sassot, hep-ph/0311227)

